Skip to content
USRADIOGUY

USRadioguy.com

Welcome to USRadioguy.com – Unlocking the Potential of Software Defined Radio

  • Home
    • Home of USRadioguy
    • USRadioguy Newsletter
    • Tried and Tested Hardware
    • What is RTL-SDR?
    • Global Weather Data
  • Satellite Reception
    • Geo Stationary Satellites
      • Geo-stationary Satellite Imagery Reception
      • GOESTOOLS on the PI
      • Update Goestools for GOES 18,19
      • Receiving GOES with SatDump CLI Mode
      • GOES receiving in Windows for SatDump GUI
      • Decoding EWS-G1/EWS-G2
      • GOES GRB Reception WIP
      • Optimizing a WIFI Grid Antenna for Maximum Efficiency
    • APT Satellites
      • APT RECEPTION
      • Satdump for Meteor and NOAA decoding
      • METEOR M2- Series
      • WxtoImg Fix
      • Converting to new TLE format
      • Layering Fire and Hotspot Data on Meteor Sat Imagery
      • HRPT Satellite Tracking and Capture
    • Receiving Other Satellites
      • Inmarsat Decoding
      • Receiving the Funcube Amateur Satellite
    • User Maps and Dish Pointers
      • Satellite Dish Pointer
      • User Global Ground Station Maps
      • Usermap rendered with Cesium
      • Global Map of Govt Dish Stations
    • Satellite Details & Information
      • ORBITAL DYNAMICS 101
      • HRIT/EMWIN & GRB Defined
      • Mesoscale Imagery Defined
      • Viterbi, R/S Errors, Packets
      • GOES BAND IMAGERY
      • Stray Light Zone (SLZ)
      • Drifting a geostationary satellite
      • GOES-R Series Multimedia Tour
      • Online Satellite Imagery and Information
      • Satellite Frequencies
      • Solar and Space Weather
  • Satellite Imagery
    • IMAGERY- Current GOES East & West HRIT Satellite Imagery
    • IMAGERY- GOES 16&18 – Past 96 Hours of Imagery
    • High Resolution Imagery
    • Daily 3D view of Earth
    • NOAA APT Satellite imagery
    • PlanetMaker
    • GOES16 A full year of received imagery
  • Imagery Processing
    • Custom Color Lookup Table & Gradients
    • GOES-R Custom Imagery Scripts
    • Global geo-ring composites
    • MODIS VIIRS Global Coverage
    • 3D Satellite Tracking
    • The quest for True Color Imagery
    • 3D animation of realtime data
    • Layering Geo-Spatial Fire Data into Satellite Imagery
    • Orbital dynamics and the Moon
    • National Hurricane Data
  • News, VLOGS & BLOGS
    • News & USRadioguy Blogs
    • USRadioguy VLOGS
  • Project Lab
    • Orbital Information and Visualizations
      • Enhanced Planet Earth
      • Satellites in Orbit
      • Solar System
      • Objects in Orbit
    • Current Station Weather
      • Current Groundstation Weather
      • Global Weather Data
      • Space Weather
    • WWII RADIO
      • WWII K-24 Aerial Camera
      • WWII RADIO
      • RADIO SET SCR-284
      • VS-3 VIBRATOR CONVERSION
      • VIBRATOR CONVERSION MODULE
      • BD-71 Field Switch Board and EE-8B Field Telephones
      • R-100/URR 1944 MORALE RADIO
      • A PORTABLE WWII ERA “MORALE RADIO”
      • AN/GRR-5 THE ANGRY 5
      • WWII Audio Page
    • Raspberry Pi Projects
      • ADS-B Reception
      • Allsky Camera
      • Pi Based Picture Frame
      • PI Based Broadcastify Server
      • Solar Power for PI
    • Hubble Space Telescope Data Processing
    • Zombie Satellites
    • DRONES
  • About Me
    • About Usradioguy
      • SETEC Astronomy
    • Tried and Tested Hardware
    • Rare Captures
    • My Other Interests
    • Presentations
    • Merchandise
    • Privacy Policy
  • Home
  • Stray Light Zone (SLZ)

Stray Light Zone (SLZ)

Loading

Stray Light Zone, or “who took a chunk out of my image?”

Updated 03.19.2025

If you are seeing strange images around 05:00 -09:30 UTC, depending on the orbital position and satellite, like the ones below, don’t immediately run to check all your settings and connections!!

The term “stray light” generally refers to unwanted light that interferes with the intended operation of an optical system. However, when you see “Stray Light Zone (SLZ)” it is most often referring to a phenomenon that occurs with GOES (Geostationary Operational Environmental Satellite) weather satellites.

It can happen around satellite local midnight time, and the ABI would see a direct head-on view of the sun near the edge of the earth. This could damage the ABI imager (in the same way as your eye’s retina or camera sensor could be damaged) so steps are taken to prevent this from happening while preserving as much of the rest of the image as possible.

GOES satellites (as well as Himawari 8 and 9, GK2A, etc.) encounter two periods during the year in which they are in Earth’s shadow. Known as the Eclipse (ECL) season, these periods require the spacecraft to be completely dependent upon batteries for a maximum of 72 minutes daily. Eclipses occur approximately from late February to mid-April, and from late August to mid-October.

Since GOES is in a geosynchronous orbit, the sun will yearly traverse a +/- 23.5 degree angle perpendicular to the Earth’s equator (GOES orbit plane). As a result, near the Vernal and Autumnal Equinoxes, the Earth disk will periodically occult the sun, from a GOES perspective. Essentially, there are two eclipse seasons for each GOES spacecraft. Each eclipse season spans a 48-day period, symmetric around the equinox and the sun occultation lasts for a maximum of 72 minutes/day during the equinox.

During eclipse season with the GOES-R satellite series, this Stray Light Zone (SLZ) contamination is visible approximately 45 minutes before and after satellite local midnight (~0500 UTC for GOES-East and ~0900 UTC for GOES-West) each day for approximately 45 days before and after the vernal and autumnal equinox, in the form of a vertical beam of light that is more intense at the end closer to the Sun. Stray light contamination is often prominent in the images of visible and near-infrared bands (bands 1–6), although it can also be discerned in band 7 images. This is a normal occurrence for the ABI.

But how? The underlying mechanism behind this occurrence hinges upon preemptive measures devised to avert direct solar irradiation upon the ABI detectors, and concurrently, to safeguard the optimal operational capacity of the ABI sensor. This is realized through a predetermined solar avoidance regimen orchestrated by analyzing a subset of the ABI swaths in correspondence with the geometric angle between the ABI instrument and solar azimuth during specific temporal intervals. The ABI scan mirrors are consequently adjusted to diverge from observations of the terrestrial scene during these defined periods. Furthermore, solar radiance can induce thermal elevation within the ABI instrument, thereby influencing its data acquisition precision by augmenting detector temperatures.

Furthermore, the ABI instrument undergoes routine calibration endeavors to warrant the veracity and dependability of its measurements. This calibration routine entails obtaining measurements from a stabilized reference target, thereby compensating for any sensor sensitivity alterations over time, including those attributable to solar radiation exposure.

A related optical artifact, denoted as Lens Flare (manifesting as a diminutive lightening bolt-shaped radiance), arises due to the phenomenon of light refraction upon transiting Earth’s atmosphere (the angular deviation of solar illumination through the atmospheric medium can reach magnitudes of up to 0.6°). This refraction effect occasionally enables residual solar illumination to impinge upon segments of the ABI imager.

In view of the distinct spectral absorption profiles of each band, a pragmatic equilibrium equation encompassing all bands is employed to optimize usable imagery across the spectrum. This regime will effectuate a “flip” towards the southern hemisphere in the month of February.

Pacman has been busy…..

Additional Impacts

During the eclipse season with the GOES-R satellite series Geostationary Lightning Mapper (GLM), solar intrusion into the lens assembly will result in localized blooming (false events) and saturation (blind regions) in the data. These effects will occur daily around the same time as the ABI effects (0500 UTC and 0900 UTC). The daily effects begin with many false events at the limb, which cover regions of varying size and location as the eclipse features move across the field of view. The false events will peak during the beginning and end of the eclipse season and the 20-second files will intermittently peak in size above 3-5 MB per file during false events, which is well above the average of ~0.3 MB per file.

The increased number of false events can cause an overflow condition in the electronics which saturates the event processing. This saturation creates blind regions in the data outside of the areas impacted by the solar intrusion. The length of these temporary outages depends on the region and is on the order of minutes. A blooming filter is being developed to remove the event spikes, although lightning detection outages will remain in the affected regions.


There is a significant risk of light from the sun directly entering the scanners and causing degraded products as the spacecraft enters and leaves the Earth’s shadow, requiring a special algorithm to be applied to the Imager products. In some instances shifting, canceling, or truncating the frame is necessary. This is known as the “Stray Light Zone (SLZ).” The seasonal charts below describe the GOES-East and GOES-West Imager and Sounder scan frames that are canceled or shifted due to SLZ.

GOES Seasonal Eclipse Charts


Link to eclipse charts Charts compiled by NOAA/NESDIS


Looking for hardware recommendations?? Have a look here at my Tried and Tested hardware – SDR’s, Pi’s, Connectors, Antenna’s, and more.

Hardware Humor Imagery Processing Interesting stuff you should know! Launch News Life News Product Review Satellites Science Software Space Weather Uncategorized VLOG

Satellite And Weather Related Feeds

  • CIMSS Satellite Blog
  • USRadioguy.com
  • wildfires
  • NASA Earth Observatory
  • SPC Particularly Dangerous Situation (PDS) Tornado/Severe Thunderstorm Watch
  • satellites
  • Satellites News -- ScienceDaily
  • Satellite Liaison Blog
Using Polar2grid and Direct Broadcast files to create imagery
Using Polar2grid and Direct Broadcast files to create imagery
Cirrus over the western Great Lakes
Cirrus over the western Great Lakes
Wildfire in Saskatchewan produces a pyrocumulonimbus cloud
Wildfire in Saskatchewan produces a pyrocumulonimbus cloud
End Of Life for NOAA 15,18,19?….not so fast…
End Of Life for NOAA 15,18,19?….not so fast…
GOES-19 now GOES-EAST
GOES-19 now GOES-EAST
GOES 19 Operational Schedule
GOES 19 Operational Schedule
The fire cycle
March was nation's 6th warmest on record
March was nation's 6th warmest on record
Podcast: Could the LA Wildfires harm California's marine life?
Podcast: Could the LA Wildfires harm California's marine life?
Mapping the Tiny Plankton That Feed Giant Right Whales
Mapping the Tiny Plankton That Feed Giant Right Whales
Lights of Southeast Asia
Lights of Southeast Asia
The Arches That Salt Built
The Arches That Salt Built
SPC PDS Tornado Watch 98
SPC PDS Tornado Watch 98
Five historically huge solar events
Five historically huge solar events
65 years since the world’s first weather satellite
65 years since the world’s first weather satellite
Investing in America: NOAA's Science, Service and Stewardship in Action
Satellite measures CO2 and NO2 simultaneously from power plant emissions for the first time
Existing international law can help secure peace and security in outer space
Small, faint and 'unexpected in a lot of different ways': Astronomers make galactic discovery
Another Week, Another Deep South Soaker
Another Week, Another Deep South Soaker
4 May 2025 Dust and Accumulating Hail
4 May 2025 Dust and Accumulating Hail
Southern Plains Deluge
Southern Plains Deluge
  • Facebook Geo Stationary Satellites
  • Usradioguy Facebook
  • Instagram
  • Reddit
  • Github
  • Linkedin

Copyright © 2025 USRadioguy.com - All Rights Reserved. All material protected by Fair Use Section 107 of the Copyright Act. This site is Verified and Secured with 256 bit SSL encryption